Share Email Print
cover

Proceedings Paper

First results with real-time selenium-based full-field digital mammography three-dimensional imaging system
Author(s): Mari Lehtimaki; Martti Pamilo; Leena Raulisto; Martti Kalke
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Our goal in this paper is to evaluate the capability of real-time selenium-technology-based full-field digital mammography (FFDM) system in breast tomosynthesis. The objective of this study is to find out the present status of amorphous selenium technology in the sense of advanced applications in clinical use. We were using tuned aperture computed tomography (TACT+) 3-dimensional (3D) technology for reconstruction. Under evaluation were amorphous selenium signal-to-noise-ratio, flat panel image artefacts and acquisition time to perform full-field digital mammography 3D examination. To be able to validate the system we used a special breast phantom. We found out that 3D imaging technology provides diagnostic value and benefits over 2-dimensional (2D) imaging. 3D TACT advantages are to define if mammography finding is caused by a real abnormal lesion or by superposition of normal parenchymal structures, to be able to diagnose and analyze the findings properly, to detect changes in breast tissue which would otherwise be missed, to verify the possible multifocality of the breast cancers, to verify the correct target for biopsies and to reduce number of biopsies performed. Slice visualization and 3D volume model provide greater diagnostic information compared to 2D projection screening and diagnostic imaging.

Paper Details

Date Published: 6 May 2004
PDF: 8 pages
Proc. SPIE 5368, Medical Imaging 2004: Physics of Medical Imaging, (6 May 2004); doi: 10.1117/12.533393
Show Author Affiliations
Mari Lehtimaki, GE Medical Systems (Finland)
Martti Pamilo, Helsinki Univ. Central Hospital (Finland)
Leena Raulisto, Helsinki Univ. Central Hospital (Finland)
Martti Kalke, GE Medical Systems (Finland)


Published in SPIE Proceedings Vol. 5368:
Medical Imaging 2004: Physics of Medical Imaging
Martin J. Yaffe; Michael J. Flynn, Editor(s)

© SPIE. Terms of Use
Back to Top