Share Email Print

Proceedings Paper

Left ventricular volume estimation from three-dimensional echocardiography
Author(s): Il-Seop Shin; Patrick A. Kelly; K. Francis Lee; Dennis A. Tighe
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For three-dimensional echocardiography (3DE) to have greater clinical use, there will need to be automated means for estimating cardiac function parameters such as left ventricular (LV) volume directly from the 3DE data set. A prerequisite for estimation of LV volume is the accurate extraction of the endocardium over a cardiac cycle. In this paper we present a semi-automated algorithm that, with minimal operator input, effectively tracks the LV boundary through the spatial and temporal sequences of 2D frames generated by 3DE. Variations in imaging conditions and heart motion make it difficult to develop effective prior geometric and dynamic models for the LV. However, operators can easily locate a few landmark points on the boundary in a given 2D frame. Our algorithm begins with the operator marking some highly visible points along the boundary in a few spatially separated frames at end-systole. This takes a few seconds to complete, and is the only operator input. Full boundary estimates in these initial frames are completed by spline fitting to the selected points. These estimates are used to establish search regions for the intermediate frames at end-systole, within which boundary points are specified as those having highest edge probability. The use of search regions avoids matches to non-endocardial edges. A similar procedure is then used for the temporal sequence of frames at each spatial location: the boundary is tracked by finding points of high edge probability within search regions initialized by the end-systole estimate at that location. LV volume as a function of time is then calculated from the set of estimated boundaries using a modified version of planimetry.

Paper Details

Date Published: 28 April 2004
PDF: 10 pages
Proc. SPIE 5373, Medical Imaging 2004: Ultrasonic Imaging and Signal Processing, (28 April 2004); doi: 10.1117/12.532726
Show Author Affiliations
Il-Seop Shin, Univ. of Massachusetts/Amherst (United States)
Patrick A. Kelly, Univ. of Massachusetts/Amherst (United States)
K. Francis Lee, Tufts Univ. School of Medicine (United States)
Dennis A. Tighe, Univ. of Massachusetts Medical Ctr. (United States)

Published in SPIE Proceedings Vol. 5373:
Medical Imaging 2004: Ultrasonic Imaging and Signal Processing
William F. Walker; Stanislav Y. Emelianov, Editor(s)

© SPIE. Terms of Use
Back to Top