Share Email Print
cover

Proceedings Paper

Investigation of systematical overlay errors limiting litho process performance of thick implant resists
Author(s): Alexandra G. Grandpierre; Roberto Schiwon; Jens -U. Bruch; Christoph Nacke; Uwe Paul Schroeder
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Tapered resist profiles have been found to cause a deterimental effect on the overlay measurement capability, affecting lithography processes which utilize thick implant resist. Particularly, for resist thicknesses greater than 1.5 μm, the systematical contribution to the overlay error becomes predominant. In CMOS manufacturing, these resist types are being used mainly for high energy well implants. As design rules progressively shrink, the overlay requirements are getting tighter, such that the limits of the process capability are reached. Since the resist thickness cannot be reduced due to the requirements of the implant process, it becomes inevitable to reduce the systematical overlay error for the litho process involving thick resists. The following analysis concentrates on the tapers of overlay marks printed on thick i-line positive resists. Conventionally, overlay between two litho layers is measured from box in box marks with respect to a reference layer where the statistical shift between the boxes is expected to provide the biggest source of residuals. We observed however that an even bigger error could be introduced by an unevenness of the i-line resist tapers, adding asymmetrical chip magnification. The inclination of these tapers depends on the proximity and surface of the surrounding features and stack variations. We show that by adjusting soft and hard bake temperatures and times, tapers can be significantly reduced and thereby the overlay performance was greatly improved.

Paper Details

Date Published: 24 May 2004
PDF: 7 pages
Proc. SPIE 5375, Metrology, Inspection, and Process Control for Microlithography XVIII, (24 May 2004); doi: 10.1117/12.532334
Show Author Affiliations
Alexandra G. Grandpierre, Infineon Technologies AG (Germany)
Roberto Schiwon, Infineon Technologies AG (Germany)
Jens -U. Bruch, Infineon Technologies AG (Germany)
Christoph Nacke, Infineon Technologies AG (Germany)
Uwe Paul Schroeder, Infineon Technologies AG (Germany)


Published in SPIE Proceedings Vol. 5375:
Metrology, Inspection, and Process Control for Microlithography XVIII
Richard M. Silver, Editor(s)

© SPIE. Terms of Use
Back to Top