Share Email Print
cover

Proceedings Paper

Intervertebral disc responses during spinal loading with MRI-compatible spinal compression apparatus
Author(s): Iwane Mitsui; Yoshiya Yamada
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This study addresses the development of an MRI-compatible spinal compression harness for use as a research and diagnostic tool. This apparatus adds valuable information to MRI imaging regarding the physiology/biomechanics of intervertebral discs and pathophysiology of back pain in patients and astronauts in space. All materials of the spinal compression apparatus are non-metallic for MRI compatibility. The compact design fits into standard MRI or CT scanners and loading is adjusted to specific percentages of BW with elastic cords. Previously this capability has not been available. Three healthy male subjects were fitted with a spinal compression harness and placed supine in a MRI scanner. Longitudinal distance between T7/8 and L5/S1 discs decreased 5.6 mm with 50% BW compression. Lumbosacral angle increased 17.2 degrees. T2 values of nucleus pulposus from L1/2 to L5/S1 discs increased 18.2±6.1% (±SD) during 50% BW compression and 25.3±7.4% (±SD) during 75% BW compression.

Paper Details

Date Published: 13 July 2004
PDF: 6 pages
Proc. SPIE 5312, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIV, (13 July 2004); doi: 10.1117/12.529851
Show Author Affiliations
Iwane Mitsui, Waseda Univ. (Japan)
Mitsui Medical Clinic (Japan)
Yoshiya Yamada, Mitsui Medical Clinic (Japan)


Published in SPIE Proceedings Vol. 5312:
Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIV
Brian Jet-Fei Wong; Nikiforos Kollias; Kenton W. Gregory; Henry Hirschberg; Reza S. Malek; Abraham Katzir; David S. Robinson; Kenneth Eugene Bartels; Eugene A. Trowers; Werner T.W. de Riese; Lawrence S. Bass; Lloyd P. Tate; Steen J. Madsen; Keith D. Paulsen; Karen M. McNally-Heintzelman, Editor(s)

© SPIE. Terms of Use
Back to Top