Share Email Print

Proceedings Paper

Optical interconnects in commercial BiCMOS
Author(s): Tao Yin; Alyssa Apsel; Anand Mohan Pappu; Chak Reungsinpinya; Aaditya Khimani
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this work, we demonstrated a practical means to construct wafer-level optical interconnects in commercial BiCMOS electronics. Through modifying the layout and design of commercially available SiGe Heterojunction Bipolar Transistors (HBT) through MOSISTM foundry, we obtained high performance SiGe Heterojunction Phototransistors (HPT) that utilize the SiGe Base and Collector junction for photo-detection and the transistor action for the amplified photocurrent. Responsivities of 2.4A/W and 0.2A/W were achieved for the phototransistor detecting light of 850nm and 1060nm, respectively. The external quantum efficiency of 350% was obtained. The photocurrent gain was shown to be 78. Furthermore, we investigated the integration of optical waveguides and elements with the SiGe commercial platform to demonstrate an effective approach of the wafer-level optical interconnects. The leaky-mode waveguide routed on the chip surface can couple the light laterally from the input fiber to the buried photodetection region. A 20% coupling efficiency is obtained in the SiGe layer, and provides a response about 40 times higher than that of the vertical illumination. The integrated on-chip waveguides and photodetectors in the commercial platform offer efficient optical-to-electrical conversion and a low-loss routing scheme useful for on-chip computational architectures.

Paper Details

Date Published: 1 July 2004
PDF: 10 pages
Proc. SPIE 5357, Optoelectronic Integration on Silicon, (1 July 2004); doi: 10.1117/12.529351
Show Author Affiliations
Tao Yin, Cornell Univ. (United States)
Alyssa Apsel, Cornell Univ. (United States)
Anand Mohan Pappu, Cornell Univ. (United States)
Chak Reungsinpinya, Cornell Univ. (United States)
Aaditya Khimani, Cornell Univ. (United States)

Published in SPIE Proceedings Vol. 5357:
Optoelectronic Integration on Silicon
David J. Robbins; Ghassan E. Jabbour, Editor(s)

© SPIE. Terms of Use
Back to Top