Share Email Print
cover

Proceedings Paper

Bioluminescent bioreporter sensing of foodborne toxins
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Histamine is the primary etiological agent in the foodborne disease scombrotoxicosis, one of the most common food toxicities related to fish consumption. Procedures for detecting histamine in fish products are available, but are often too expensive or too complex for routine use. As an alternative, a bacterial bioluminescent bioreporter has been constructed to develop a biosensor system that autonomously responds to low levels of histamine. The bioreporter contains a promoterless Photorhabdus luminescens lux operon (luxCDABE) fused with the Vibrio anguillarum angR regulatory gene promoter of the anguibactin biosynthetic operon. The bioreporter emitted 1.46 times more bioluminescence than background, 30 minutes after the addition of 100mM histamine. However, specificity was not optimal, as this biosensor generated significant bioluminescence in the presence of L-proline and L-histidine. As a means towards improving histamine specificity, the promoter region of a histamine oxidase gene from Arthrobacter globiformis was cloned upstream of the promotorless lux operon from Photorhabdus luminescens. This recently constructed whole-cell, lux-based bioluminescent bioreporter is currently being tested for optimal performance in the presence of histamine in order to provide a rapid, simple, and inexpensive model sensor for the detection of foodborne toxins.

Paper Details

Date Published: 14 June 2004
PDF: 5 pages
Proc. SPIE 5329, Genetically Engineered and Optical Probes for Biomedical Applications II, (14 June 2004); doi: 10.1117/12.529272
Show Author Affiliations
Amanda C. Fraley, Univ. of Tennessee (United States)
Steven Ripp, Univ. of Tennessee (United States)
Gary S. Sayler, Univ. of Tennessee (United States)


Published in SPIE Proceedings Vol. 5329:
Genetically Engineered and Optical Probes for Biomedical Applications II
Alexander P. Savitsky; Darryl J. Bornhop; Ramesh Raghavachari; Samuel I. Achilefu, Editor(s)

© SPIE. Terms of Use
Back to Top