Share Email Print
cover

Proceedings Paper

Automatic textual annotation of video news based on semantic visual object extraction
Author(s): Nozha Boujemaa; Francois Fleuret; Valerie Gouet; Hichem Sahbi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, we present our work for automatic generation of textual metadata based on visual content analysis of video news. We present two methods for semantic object detection and recognition from a cross modal image-text thesaurus. These thesaurus represent a supervised association between models and semantic labels. This paper is concerned with two semantic objects: faces and Tv logos. In the first part, we present our work for efficient face detection and recogniton with automatic name generation. This method allows us also to suggest the textual annotation of shots close-up estimation. On the other hand, we were interested to automatically detect and recognize different Tv logos present on incoming different news from different Tv Channels. This work was done jointly with the French Tv Channel TF1 within the "MediaWorks" project that consists on an hybrid text-image indexing and retrieval plateform for video news.

Paper Details

Date Published: 18 December 2003
PDF: 11 pages
Proc. SPIE 5307, Storage and Retrieval Methods and Applications for Multimedia 2004, (18 December 2003); doi: 10.1117/12.529148
Show Author Affiliations
Nozha Boujemaa, INRIA Rocquencourt (France)
Francois Fleuret, INRIA Rocquencourt (France)
Valerie Gouet, INRIA Rocquencourt (France)
Hichem Sahbi, INRIA Rocquencourt (France)


Published in SPIE Proceedings Vol. 5307:
Storage and Retrieval Methods and Applications for Multimedia 2004
Minerva M. Yeung; Rainer W. Lienhart; Chung-Sheng Li, Editor(s)

© SPIE. Terms of Use
Back to Top