Share Email Print

Proceedings Paper

Numerical calculation of nonlinear ultrashort laser pulse propagation in water
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

When ultrashort laser pulses are focused inside transparent materials, extremely high field intensities can easily be achieved in the focal volume leading to nonlinear interaction with the material. In corneal tissue this nonlinear interaction results in an optical breakdown that may serve as a cutting mechanism in ophthalmology. As a side effect of optical breakdown in corneal tissue, streak-like structures have been observed as discoloration in histological sections under a light microscope. To investigate the streak formation, a numerical model including nonlinear pulse propagation due to self-focusing, group velocity dispersion, and plasma defocusing due to generated free electrons is presented. The model consists of a (3+1)-dimensional nonlinear Schroedinger equation, describing the pulse propagation coupled to an evolution equation covering the generation of free electrons. The rate equation contains multi photon ionization as well as avalanche ionization. The model is applicable to any transparent Kerr-medium.

Paper Details

Date Published: 1 June 2004
PDF: 8 pages
Proc. SPIE 5340, Commercial and Biomedical Applications of Ultrafast Lasers IV, (1 June 2004); doi: 10.1117/12.529003
Show Author Affiliations
Cord L. Arnold, Laser Zentrum Hannover e.V. (Germany)
Alexander Heisterkamp, Laser Zentrum Hannover e.V. (Germany)
Wolfgang Ertmer, Univ. Hannover (Germany)
Holger Lubatschowski, Laser Zentrum Hannover e.V. (Germany)

Published in SPIE Proceedings Vol. 5340:
Commercial and Biomedical Applications of Ultrafast Lasers IV
Joseph Neev; Christopher B. Schaffer; Andreas Ostendorf, Editor(s)

© SPIE. Terms of Use
Back to Top