Share Email Print
cover

Proceedings Paper

Modeling type-II InAs/GaSb superlattices using empirical tight-binding method: new aspects
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The recent advances in the experimental work on the Type II InAs/GaSb superlattices necessitate a modeling that can handle arbitrary layer thickness as well as different types of interfaces in order to guide the superlattice design. The empirical tight-binding method (ETBM) is a very good candidate since it builds up the Hamiltonian atom by atom. There has been a lot of research work on the modeling of Type II InAs/GaSb superlattices using the ETBM. However, different groups generate very different accuracy comparing with experimental results. We have recently identified two major aspects in the modeling: the antimony segregation and the interface effects. These two aspects turned out to be of crucial importance governing the superlattice properties, especially the bandgap. We build the superlattice Hamiltonian using antimony segregated atomic profile taking into account the interface. Our calculations agree with our experimental results within growth uncertainties. In addition we introduced the concept of GaxIn1-x type interface engineering, which will add another design freedom especially in the mid-wavelength infrared range (3~7 μm) in order to reduce the lattice mismatch.

Paper Details

Date Published: 6 July 2004
PDF: 8 pages
Proc. SPIE 5359, Quantum Sensing and Nanophotonic Devices, (6 July 2004); doi: 10.1117/12.528297
Show Author Affiliations
Yajun Wei, Northwestern Univ. (United States)
Manijeh Razeghi, Northwestern Univ. (United States)
Gail J. Brown, Air Force Research Lab. (United States)
Meimei Z. Tidrow, Missile Defense Agency (United States)


Published in SPIE Proceedings Vol. 5359:
Quantum Sensing and Nanophotonic Devices
Manijeh Razeghi; Gail J. Brown, Editor(s)

© SPIE. Terms of Use
Back to Top