Share Email Print
cover

Proceedings Paper

Spatial coherence of transient stimulated Raman scattering
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Numerical model describing transient stimulated Raman scattering and taking into account diffraction was developed and Stokes wave evolution in compressed hydrogen was simulated to study space-time dynamics of amplitude-phase SRS characteristics. Space-time intensity and phase dependencies as well as spectrum and spatial coherence function of pump and Stokes waves were obtained. Considerable difference in mentioned characteristics was found out for transient and quasi-stationary stimulated Raman scattering modes. More complicated space-time dependencies are typical for transient mode in comparison with quasi-stationary mode. However, under quasi-stationary conditions Stokes wave phase varies in wider limits, which results in spatial coherency lowering. Module of spatial coherency function value lowers to threshold and then becomes stable as conversion coefficient increases. Presence of Stokes beam focusing is shown at stimulated Raman scattering, which can be explained by competition of strong Raman amplification and diffraction. Results of simulations are in good agreement with experimental data.

Paper Details

Date Published: 14 June 2004
PDF: 7 pages
Proc. SPIE 5337, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications III, (14 June 2004); doi: 10.1117/12.528253
Show Author Affiliations
Sergey A. Lobanov, St. State Petersburg Institute of Fine Mechanics and Optics (Russia)
Victor G. Bespalov, S.I. Vavilov State Optical Institute (Russia)


Published in SPIE Proceedings Vol. 5337:
Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications III
Kenneth L. Schepler; Dennis D. Lowenthal, Editor(s)

© SPIE. Terms of Use
Back to Top