Share Email Print

Proceedings Paper

Intersubband transitions in GaN/AlN quantum wells for Tb/s optical switching
Author(s): Norio Iizuka; Kei Kaneko; Nobuo Suzuki
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Characteristics of the absorption recovery and the saturation of intersubband transition in GaN/AlN quantum wells are investigated for the purpose of applying these quantum wells to optical switches operating at a higher bit rate than 1 Tb/s. The pump-probe measurement verifies the absorption recovery time to be 150 fs at a wavelength of 4.5 μm. Dependence on the absorption on the input light intensity is examined at a wavelength of 1.48 μm for an optical pulse with a width of 130 fs. The characterization is performed with the Lorentzian fit of the absorption spectrum on the assumption of a two-level system. The result indicates that the recovery time is much less than 1 ps and the absorption saturation intensity is of the order of pJ/μm2. A ridge waveguide was fabricated and the onset of the intersubband absorption was confirmed. Finally, the switching performance is studied by means of the finite-difference time-domain (FDTD) simulation combined with three-level rate equations. Ridge waveguide structures with 3-QWs in the mid-layer are examined. Control and signal pulses are assumed to be the Gaussian pulses with a width of 250 fs. The results show that an extinction ratio of larger than 10 is achievable with an input control pulse energy of less than 1 pJ.

Paper Details

Date Published: 16 June 2004
PDF: 9 pages
Proc. SPIE 5352, Ultrafast Phenomena in Semiconductors and Nanostructure Materials VIII, (16 June 2004); doi: 10.1117/12.528193
Show Author Affiliations
Norio Iizuka, Toshiba Corp. (Japan)
Kei Kaneko, Toshiba Corp. (Japan)
Nobuo Suzuki, Toshiba Corp. (Japan)

Published in SPIE Proceedings Vol. 5352:
Ultrafast Phenomena in Semiconductors and Nanostructure Materials VIII
Kong-Thon Tsen; Jin-Joo Song; Hongxing Jiang, Editor(s)

© SPIE. Terms of Use
Back to Top