Share Email Print
cover

Proceedings Paper

Reaction-layer fatigue: understanding the limitations of structural silicon
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Previous research has attributed the fatigue susceptibility of silicon films to the sequential oxidation of the silicon and environmentally-assisted crack growth solely within the SiO2 surface layer. This “reaction-layer fatigue” mechanism is only significant in thin films where the critical crack size for catastrophic failure can be reached by a crack growing within the oxide layer. Fracture mechanics analyses can provide important insight into the limitations of structural silicon films. In this paper, our current understanding of the reaction-layer fatigue mechanism will be reviewed. Current results suggest that surface oxide layer thicknesses as low as 10-20 nm may induce reaction-layer fatigue when considering failure of the specimen for a crack reaching the silica/silicon interface. In contrast, 3-fold thicker surface oxide layers are required for failure due to a crack within the oxide layer.

Paper Details

Date Published: 23 December 2003
PDF: 13 pages
Proc. SPIE 5343, Reliability, Testing, and Characterization of MEMS/MOEMS III, (23 December 2003); doi: 10.1117/12.527465
Show Author Affiliations
Christopher L. Muhlstein, The Pennsylvania State Univ. (United States)
O. N. Pierron, The Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 5343:
Reliability, Testing, and Characterization of MEMS/MOEMS III
Danelle M. Tanner; Rajeshuni Ramesham, Editor(s)

© SPIE. Terms of Use
Back to Top