Share Email Print

Proceedings Paper

Microscopic tomography by digital interference holography
Author(s): Myung K. Kim
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We are developing the digital interference holography (DIH) as a novel method of microscopic tomographic imaging by numerical superposition of a number of holographic fields taken with varying wavelengths. The digital interference holography does not involve pixel-by-pixel mechanical scanning of three-dimensional volume and yet achieves high lateral and longitudinal resolutions. The holographic interference pattern of an object is generated optically and recorded digitally using a CCD camera. The hologrpahic image field is numerically calculated using basic diffraction formulas and the process is repeated for a range of varying wavelengths at regular intervals. Numerical superposition, or digital interference, of the holographic image fields yields the desired three-dimensional representation of the object. Experiments have demonstrated a few-micron lateral and axial resolutions. Furthermore, since the DIH is a coherent imaging system, one can form true tomographic images of sub-surface structures, in the presence of diffuse scattering from overlying layers. By being able to generate true tomographic images of subsurface structures, without the need for three-dimensional mechanical scannig, the DIH method can provide a very efficient and versatile imaging modality for a wide range of applications in materials science and biomedical imaging.

Paper Details

Date Published: 13 July 2004
PDF: 10 pages
Proc. SPIE 5324, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XI, (13 July 2004); doi: 10.1117/12.524864
Show Author Affiliations
Myung K. Kim, Univ. of South Florida (United States)

Published in SPIE Proceedings Vol. 5324:
Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XI
Jose-Angel Conchello; Carol J. Cogswell; Tony Wilson, Editor(s)

© SPIE. Terms of Use
Back to Top