Share Email Print
cover

Proceedings Paper

Curved MEMS resonators yield infrasonic resonant frequencies on single-chip in simulation study
Author(s): Carlos P. Borras; Harold L. Stalford
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper is motivated by the challenge to develop mechanical resonators with fundamental resonant frequencies in the infrasonic range 1-20 Hz that fit onto a single-chip module. In this paper, we present preliminary findings based on finite element modeling (FEM) analysis of designs prepared for fabrication based on SUMMiT VTM surface micromachining technology using curve-shaped beams clamped at both ends. Circular shapes considered are a flat-horseshoe shape (thickness is transverse to plane of substrate) and a split-ring shape (width is transverse to plane of substrate). For the FEM simulation study, we considered a single-chip module space size of 6mm diameter and resonators with 1 μm beam thickness. Designs are considered with and without added mass. We find that an order of magnitude reduction in the 1st mode resonant frequency is achievable by curving beams into a space of fixed size. The simulation results show that infrasonic resonant frequencies 2-20 Hz are achievable by curve-shaped resonators with “added mass” with 1 μm beam thickness for single-chip 6mm-diameter size.

Paper Details

Date Published: 24 January 2004
PDF: 8 pages
Proc. SPIE 5344, MEMS/MOEMS Components and Their Applications, (24 January 2004); doi: 10.1117/12.524620
Show Author Affiliations
Carlos P. Borras, Univ. of Oklahoma (United States)
Harold L. Stalford, Univ. of Oklahoma (United States)


Published in SPIE Proceedings Vol. 5344:
MEMS/MOEMS Components and Their Applications
Siegfried W. Janson; Albert K. Henning, Editor(s)

© SPIE. Terms of Use
Back to Top