Share Email Print
cover

Proceedings Paper

Novel approach to realizing quasi-phase-matched gallium arsenide optical parametric oscillators for use in mid-IR laser systems
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Most of the applications that require frequency agile solid state laser systems for use in the mid-infrared are centred on the development of optical parametric oscillators. These exploit the non-linear optical characteristics of non-centrosymmetric materials, in particular the chalcopyrite class of materials that includes AgGaSe2 and ZnGeP2. Whilst such materials are generally difficult to produce, major strides have been made in recent years to optimise crystal growth processes which have enabled the generation of moderate laser output powers. Other approaches have been centred on the use of periodically poled lithium niobate and diffusion bonded gallium arsenide. The latter system is particularly attractive because it exploits a readily available crystalline material, but its implementation is difficult because of the need for an ultra-clean processing environment and relatively high bonding temperatures. This paper describes progress in the development of a new, low-temperature approach for achieving quasi-phase matched gallium arsenide by bonding with an index-matched chalcogenide glass. A major advantage of this approach is the tolerance to GaAs wafer thickness variations and to defects at the surface of the GaAs wafers. Several glass compositions in the germanium-arsenic-selenium-tellurium system have the desired refractive indices, but only some provide the characteristics necessary to ensure the formation of stable low-loss bonds. The glass bonding process begins by RF sputtering films of the glass from pre-manufactured targets onto each side of individual GaAs substrates. These coated substrates are then assembled in a vacuum oven and uniaxially pressed under carefully controlled conditions until a single composite assembly is formed. Issues such as glass purity, the integrity of the sputtering process and choice of pressing conditions are important in ensuring that a high quality non-linear crystal is produced.

Paper Details

Date Published: 10 June 2004
PDF: 9 pages
Proc. SPIE 5273, Laser-Induced Damage in Optical Materials: 2003, (10 June 2004); doi: 10.1117/12.523302
Show Author Affiliations
Paul D. Mason, QinetiQ (United Kingdom)
Euan J. McBrearty, QinetiQ (United Kingdom)
David A. Orchard, QinetiQ (United Kingdom)
Michael R. Harris, QinetiQ (United Kingdom)
Keith L. Lewis, QinetiQ (United Kingdom)


Published in SPIE Proceedings Vol. 5273:
Laser-Induced Damage in Optical Materials: 2003
Gregory J. Exarhos; Arthur H. Guenther; Norbert Kaiser; Keith L. Lewis; M. J. Soileau; Christopher J. Stolz, Editor(s)

© SPIE. Terms of Use
Back to Top