Share Email Print
cover

Proceedings Paper

Differential optoelectronic subtractor using self electro-optic effect devices for use in sigma-delta modulation
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

As the demand for analog-to-digital (A/D) conversion with greater bandwidths increase, it is necessary to look at other alternatives to electronics for integrated circuit design. One such approach to utilize is a combination of optics and electronics, or opto-electronics, at all levels of the system hierarchy. A device that has these properties is the Self Electro-optic Effect Device (SEED), and combining this with oversampling techniques for data conversion can meet the demands for direct digitization of radio frequency (RF) signals. One form of A/D oversampling conversion method is Sigma-Delta modulation. A key element of this technique is the subtractor and in this paper we will discuss the implementation of a differential subtractor using SEEDs as part of a Sigma-Delta Modulator. This paper will detail simulation results based on experimental data to predict the behavior of two types of differential subtractors, one of which will be compared with experimental results.

Paper Details

Date Published: 30 March 2004
PDF: 12 pages
Proc. SPIE 5274, Microelectronics: Design, Technology, and Packaging, (30 March 2004); doi: 10.1117/12.523261
Show Author Affiliations
Tony Sarros, The Univ. of Adelaide (Australia)
Kerry A. Corbett, Defence Science and Technology Organisation (Australia)
Said F. Al-Sarawi, The Univ. of Adelaide (Australia)
Bradley A. Clare, Defence Science and Technology Organisation (Australia)
Kenneth J. Grant, Defence Science and Technology Organisation (Australia)
Warren Marwood, Defence Science and Technology Organisation (Australia)


Published in SPIE Proceedings Vol. 5274:
Microelectronics: Design, Technology, and Packaging
Derek Abbott; Kamran Eshraghian; Charles A. Musca; Dimitris Pavlidis; Neil Weste, Editor(s)

© SPIE. Terms of Use
Back to Top