Share Email Print
cover

Proceedings Paper

The use of titanium and titanium dioxide as masks for deep silicon etching
Author(s): Olly J. Powell; Denis Sweatman; H. Barry Harrison
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The possibility of using sputtered metals as mask materials for deep anisotropic chemical etching in silicon was investigated. Sputtered films of chrome, nickel and tungsten were all found to be chemically resistant to potassium hydroxide (KOH) and tetramethyl ammonium hydroxide (TMAOH). However as expected, these metals had poor adhesion to the silicon substrate. By comparison sputtered titanium was found to have excellent adhesion properties, and was chemically resistant to TMAOH but not to KOH. Resistance to KOH was achieved by thermal oxidation of the titanium film, at temperatures between 600 and 900° C. Following oxidation, etch depths more than 200μm were readily achieved in KOH etching. This makes sputtered titanium a potential alternative to the conventional mask material, silicon nitride, for the application of deep anisotropic etching. The reduction in etch rates due to a galvanic effect of conductive metal masks on silicon-on-insulator wafers was also investigated. It was observed that this effect was also overcome by thermal oxidation of the titanium mask.

Paper Details

Date Published: 2 April 2004
PDF: 10 pages
Proc. SPIE 5276, Device and Process Technologies for MEMS, Microelectronics, and Photonics III, (2 April 2004); doi: 10.1117/12.522845
Show Author Affiliations
Olly J. Powell, Griffith Univ. (Australia)
CRC for Microtechnology (Australia)
Denis Sweatman, Griffith Univ. (Australia)
CRC for Microtechnology (Australia)
H. Barry Harrison, Griffith Univ. (Australia)
CRC for Microtechnology (Australia)


Published in SPIE Proceedings Vol. 5276:
Device and Process Technologies for MEMS, Microelectronics, and Photonics III
Jung-Chih Chiao; Alex J. Hariz; David N. Jamieson; Giacinta Parish; Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top