Share Email Print
cover

Proceedings Paper

Mass-production fabrication of miniaturized plastic chip devices for biochemical applications
Author(s): Tsuyoshi Fujimura; Shinichi Etoh; Akihiro Ikeda; Reiji Hattori; Yukinori Kuroki
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A very important aspect in the next stage of genomic research will be the study of genetic diversity originating from an individual, for example, a single nucleotide polymorphism (SNP),. For this, the base-pair sequence needs to be determined quickly and easily; along with effectively gathering the proteins that are produced from the cell and depend on each genetic design. To meet these demands, the use of a miniaturized experimental apparatus formed on a chip is suitable as it gives a very small and well-controlled space to undertake precise analyses. This type of chip device needs to be disposable, inexpensive and of uniform quality, therefore many chips should be fabricated at the same time from a low cost chip material such as plastic. A mass production fabrication process for such plastic chips was determined as follows. A thick coating type photoresist was spin-coated onto a 4-inch size Si wafer to 20 μm thickness and patterned by UV-lithography. Thick Au structures were embedded into the resist mold by microelectropolating. After removal of the resist, Au fine structures remained and were used as a metal mold for plastic casting. Plastic, polymethylmethacrylate (PMMA), beads were dissolved in acetone and the polymer solution was cast into the metal mold under vacuum heating environment producing many identical plastic chips at a thickness of 1 mm. The size of the chemical reaction channel, one of the device’s components, was 50 μm in width and 20 μm in depth.

Paper Details

Date Published: 2 April 2004
PDF: 8 pages
Proc. SPIE 5276, Device and Process Technologies for MEMS, Microelectronics, and Photonics III, (2 April 2004); doi: 10.1117/12.522747
Show Author Affiliations
Tsuyoshi Fujimura, Kyushu Univ. (Japan)
Shinichi Etoh, Kyushu Univ. (Japan)
Akihiro Ikeda, Kyushu Univ. (Japan)
Reiji Hattori, Kyushu Univ. (Japan)
Yukinori Kuroki, Kyushu Univ. (Japan)


Published in SPIE Proceedings Vol. 5276:
Device and Process Technologies for MEMS, Microelectronics, and Photonics III
Jung-Chih Chiao; Alex J. Hariz; David N. Jamieson; Giacinta Parish; Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top