Share Email Print

Proceedings Paper

Spark plasma sintering of TiNi nanopowders
Author(s): Yongqing Fu; Shabbir Moochhala; Christopher Shearwood
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Nano-size TiNi powder prepared by electro explosion of TiNi wire process as processed by spark plasma sintering for 5 minutes at variable temperatures between 700 and 1000°C. The shape memory effect and crystallagraphy of both the powder and the sintered TiNi specimens were extensively characterized. The specimen sintered at a temperature of 700° showed high porosity and partial densification, but with apparent shape memory effect. By contrast, the specimens sintered at higher sintering temperatures above 900°C showed high density, but experienced extensive oxidation with teh resulting loss of the shape memory effect. High temperature sintering resulted in significant solid-state inter-diffusion of atoms and thus the formation of different intermetallic phases, such as NiTi2 and Ni3Ti. The phase transformation temperatures and enthalpies for the samples sintered at 700 and 800°C increased with increasing temperature. In addition, the differences between the start and finish transformation temperatures for the sintered specimens appear to be significantly narrower compared to those of the nano-powder.

Paper Details

Date Published: 29 March 2004
PDF: 9 pages
Proc. SPIE 5275, BioMEMS and Nanotechnology, (29 March 2004); doi: 10.1117/12.521420
Show Author Affiliations
Yongqing Fu, Nanyang Technological Univ. (Singapore)
Singapore MIT Alliance (Singapore)
Shabbir Moochhala, Defence Science and Technology Agency (Singapore)
Christopher Shearwood, Nanyang Technological Univ. (Singapore)

Published in SPIE Proceedings Vol. 5275:
BioMEMS and Nanotechnology
Dan V. Nicolau; Uwe R. Muller; John M. Dell, Editor(s)

© SPIE. Terms of Use
Back to Top