Share Email Print
cover

Proceedings Paper

Research on the critical parameters initialization of optical PMD compensator in high bit-rate systems
Author(s): Wenyu Zhao; Haiyi Zhang; Yuefeng Ji; Daxiong Xu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Based on the proposed polarization mode dispersion (PMD) compensation simulation model and statistical analysis method (Monte-Carlo), the critical parameters initialization of two typical optical domain PMD compensators, which include optical PMD method with fixed compensation differential group delay (DGD) and that with variable compensation DGD, are detailedly investigated by numerical method. In the simulation, the line PMD values are chosen as 3ps, 4ps and 5ps and run samples are set to 1000 in order to achieve statistical evaluation for PMD compensated systems, respectively. The simulation results show that for the PMD value pre-known systems, the value of the fixed DGD compensator should be set to 1.5~1.6 times of line PMD value in order to reach the optimum performance, but for the second kind of PMD compensator, the DGD range of lower limit should be 1.5~1.6 times of line PMD provided that of upper limit is set to 3 times of line PMD, if no effective ways are chosen to resolve the problem of local minimum in optimum process. Another conclusion can be drawn from the simulation is that, although the second PMD compensator holds higher PMD compensation performance, it will spend more feedback loops to look up the optimum DGD value in the real PMD compensation realization, and this will bring more requirements on adjustable DGD device, not only wider adjustable range, but rapid adjusting speed for real time PMD equalization.

Paper Details

Date Published: 7 May 2004
PDF: 7 pages
Proc. SPIE 5281, Optical Transmission, Switching, and Subsystems, (7 May 2004); doi: 10.1117/12.520521
Show Author Affiliations
Wenyu Zhao, Research Institute of Telecommunications Transmission (China)
Haiyi Zhang, Research Institute of Telecommunications Transmission (China)
Yuefeng Ji, Beijing Univ. of Posts and Telecommunications (China)
Daxiong Xu, Beijing Univ. of Posts and Telecommunications (China)


Published in SPIE Proceedings Vol. 5281:
Optical Transmission, Switching, and Subsystems
Cedric F. Lam; Chongcheng Fan; Norbert Hanik; Kimio Oguchi, Editor(s)

© SPIE. Terms of Use
Back to Top