Share Email Print
cover

Proceedings Paper

Novel MEMS torsional mirror optical switch
Author(s): Yirong Yang; Wenping Liu; Yaming Wu; Jianyi Yang; Yuelin Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have reported a novel 1x2 MEMS optical switch for telecommunication application. A vertical mirror was fabricated by wet anisotropic etching in (110)-oriented silicon wafer. Using DRIE (Deep Reactive Ion Etching) technique, we make a torsional actuator to turn a vertical mirror with a small angle. The actuator was composed of a cantilever beam and two electrodes with curved shape edges. The mirror size was 500 um (L) x 125 um (H) x 50 um (W), and the cantilever dimension was 3000 um (L) x 125 um (H) x 10 um (W). In the optical switch, ball lenses were added in the optics system to extend working distance of fibers. We also fabricated a micro optical platform integrated with the device to simplify the coupling. On the platform, a U-shape groove and fiber clamps were fabricated to accommodate and fix the SMF (single mode fiber). The surface roughness (Ra) of etched mirror was tested below 10 nm. The optical switch was tested on electric and optical characteristics: switching voltage 78.5V, resonance frequency 2.3 kHz, insertion loss 4 - 5 dB, crosstalk 45dB. The device can perform the switching function by the large.

Paper Details

Date Published: 7 May 2004
PDF: 9 pages
Proc. SPIE 5281, Optical Transmission, Switching, and Subsystems, (7 May 2004); doi: 10.1117/12.519925
Show Author Affiliations
Yirong Yang, Shanghai Institute of Microsystem and Information Technology (China)
Wenping Liu, Shanghai Institute of Microsystem and Information Technology (China)
Yaming Wu, Shanghai Institute of Microsystem and Information Technology (China)
Jianyi Yang, Shanghai Institute of Microsystem and Information Technology (China)
Yuelin Wang, Shanghai Institute of Microsystem and Information Technology (China)


Published in SPIE Proceedings Vol. 5281:
Optical Transmission, Switching, and Subsystems
Cedric F. Lam; Chongcheng Fan; Norbert Hanik; Kimio Oguchi, Editor(s)

© SPIE. Terms of Use
Back to Top