Share Email Print
cover

Proceedings Paper

Semiconductor lasers for quantum sensing
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Semiconductor lasers can be used simultaneously as optical sources and optical sensors, as they are extremely sensitive to a small amount of coherent optical feedback. We present a survey on experimental results on optical feedback in semiconductor lasers and on different approaches to describe its effect on the laser properties. We show that for long and moderate long external cavities (hundreds of meters down to centimeters) the Lang-Kobayashi delay model, multiple delays and multimode delay rate equation models are in very good agreement with experiments on edge emitting lasers (EELs) and vertical-cavity surface-emitting lasers (VCSELs). We present examples of frequency and polarization mode hopping, periodic and quasiperiodic behavior, different routes to chaos, regular pulse packages, high frequency pulsations and stochastic and coherence resonance, that all have been experimentally and numerically demonstrated. Suitable models for studying laser diodes subject to optical feedback from extremely short external cavity, or ESEC (of the order of the wavelength) are the composite cavity and the multimode butt coupling models that either consider the field amplitudes after multiple reflections in the external cavity (EC) as stationary or treat the whole compound cavity at once. Numerical and experimental studies showed that optical feedback in ESEC leads to detectable change of the laser output power or the voltage drop over the laser for a small change of either the phase or the optical feedback strength. As an example, we discuss experimental and numerical results on spectral and polarization properties of VCSELs subject of insensitive optical feedback from ESEC. The wavelength and the current of polarization switching between the two linearly polarized fundamental modes of the VCSEL are periodically modulated with the external cavity length. High contrast polarization switching is thus possible for quarter-wavelength change of external cavity length. In the case of EEL we experimentally demonstrate that with changing the length of the EC the emitted power, the wavelength and the laser voltage are periodically modulated. We explain the longitudinal mode-hopping between the neighboring composite cavity modes followed by large jumps at the external cavity frequency splitting as a result of the spectral modulation of the effective losses of the composite cavity system.

Paper Details

Date Published: 6 July 2004
PDF: 16 pages
Proc. SPIE 5359, Quantum Sensing and Nanophotonic Devices, (6 July 2004); doi: 10.1117/12.518317
Show Author Affiliations
Krassimir P. Panajotov, Vrije Univ. Brussel (Belgium)
Institute of Solid State Physics (Bulgaria)
Mikel Arizaleta, Vrije Univ. Brussel (Belgium)
Virginia Gomez, Vrije Univ. Brussel (Belgium)
Krzysztof Koltys, Vrije Univ. Brussel (Belgium)
Andrzej Tabaka, Vrije Univ. Brussel (Belgium)
Marc Sciamanna, Faculte Polytechnique de Mons (Belgium)
Irina Veretennicoff, Vrije Univ. Brussel (Belgium)
Hugo Thienpont, Vrije Univ. Brussel (Belgium)


Published in SPIE Proceedings Vol. 5359:
Quantum Sensing and Nanophotonic Devices
Manijeh Razeghi; Gail J. Brown, Editor(s)

© SPIE. Terms of Use
Back to Top