Share Email Print
cover

Proceedings Paper

Mechanical vibration testing of a tibia in vivo and finite element analysis of the shank resonant properties
Author(s): Leonid B. Maslov
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recent clinical studies clearly indicate that the resonant frequencies can be used to assess the healing state of a fractured long bone. Although these studies clearly show a certain relation between the resonant frequencies and the stiffness of the bone, the nature of this relation has not yet studied very well. The attempt of considering the locomotion system of a human shank in complex is firstly presented in this paper. The finite element model of the soft and hard tissues composed of the human shank is developed and the vibration numerical analysis is performed. The values of the resonant frequencies for the isolated tibia and for the complex biomechanical system formed by tibia, fibula, achilles tendon and principal shank muscles are obtained during finite element analysis. The obtained result can be used as theoretical fundament to developing low-frequency resonant methods for testing and diagnostics of the physiological conditions of soft and hard tissue during medical treatment and rehabilitation time period after surgery operation.

Paper Details

Date Published: 10 October 2003
PDF: 8 pages
Proc. SPIE 5127, Sixth International Workshop on Nondestructive Testing and Computer Simulations in Science and Engineering, (10 October 2003); doi: 10.1117/12.517981
Show Author Affiliations
Leonid B. Maslov, St. Petersburg State Technical Univ. (Russia)


Published in SPIE Proceedings Vol. 5127:
Sixth International Workshop on Nondestructive Testing and Computer Simulations in Science and Engineering
Alexander I. Melker, Editor(s)

© SPIE. Terms of Use
Back to Top