Share Email Print

Proceedings Paper

COIL fiber transmission for material cutting applications
Author(s): Karin Gruenewald; Juergen Handke; Wolfgang O. Schall; Frank Duschek
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The 10kW-class Chemical Oxygen-Iodine Laser (COIL) device of DLR1 was used for demonstration of efficient power coupling into a commercial fiber optic system (HIGHYAG, Berlin) modified for 1.315 μm radiation. Transmission investigations were performed with different intra-cavity apertures of the stable COIL resonator to match the out-coupled laser beam to the fiber optic system. The transmitted power through the 20 m long fiber with core diameter of 1000 μm exceeded 6 kW during a typical 8 s test run of the laser. The highest transmitted power amounts to 11 kW, the highest value reported in literature. The transmission ratio was above 90%. Samples of metal and non-metal materials were cut by using nitrogen as processing gas. The materials were selected with regard to their application in the contaminated area of nuclear power plants. The results of the cutting experiments were used in theoretical models2,3 for extrapolation of the cutting data. Scaling studies were performed to estimate achievable cutting depth with COIL systems of higher laser power.

Paper Details

Date Published: 10 November 2003
PDF: 5 pages
Proc. SPIE 5120, XIV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, (10 November 2003); doi: 10.1117/12.515573
Show Author Affiliations
Karin Gruenewald, DLR (Germany)
Juergen Handke, DLR (Germany)
Wolfgang O. Schall, DLR (Germany)
Frank Duschek, DLR (Germany)

Published in SPIE Proceedings Vol. 5120:
XIV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers
Krzysztof M. Abramski; Edward F. Plinski; Wieslaw Wolinski, Editor(s)

© SPIE. Terms of Use
Back to Top