Share Email Print

Proceedings Paper

Laboratory studies of CO2(nu2)-O vibrational energy transfer
Author(s): Karen J Castle; Eunsook S Hwang; James A. Dodd
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

For altitudes above about 80 km, oxygen molecules are increasingly dissociated by solar vacuum ultraviolet absorption, and O atoms, together with N2, become a principal constituent of the atmosphere. Through collisions with the ambient O atoms, the ground vibrational state of CO2 is efficiently excited to its lowest excited vibrational state, with one quantum of energy in the ν2 bending mode. In the near-space environment, a sizable fraction of this population relaxes via 15-μm spontaneous infrared emission, which effectively converts ambient kinetic energy into radiative energy that passes into space. This process is the principal upper atmospheric cooling mechanism in the 75-120 km altitude range. Despite the importance of this mechanism, current estimates of the CO22)-O vibrational relaxation rate constant kO2) vary over a factor of six, with the laboratory measurements clustering in the 1-1.5 × 10-12 cm3s-1 range, and the aeronomical estimates in the 3-6 × 10-12 cm3s-1 range. We are currently pursuing vibrational relaxation measurements on the CO22)-O system in the laboratory, using the temperature jump method together with transient diode laser absorption spectroscopy detection of the CO2 vibrational level populations. We will present the current state of progress of the experimental effort, as well as possible future directions.

Paper Details

Date Published: 16 February 2004
PDF: 12 pages
Proc. SPIE 5235, Remote Sensing of Clouds and the Atmosphere VIII, (16 February 2004); doi: 10.1117/12.515423
Show Author Affiliations
Karen J Castle, Bucknell Univ. (United States)
Eunsook S Hwang, Stewart Radiance Lab. (United States)
James A. Dodd, Air Force Research Lab. (United States)

Published in SPIE Proceedings Vol. 5235:
Remote Sensing of Clouds and the Atmosphere VIII
Klaus P. Schaefer; Adolfo Comeron; Michel R. Carleer; Richard H. Picard, Editor(s)

© SPIE. Terms of Use
Back to Top