Share Email Print

Proceedings Paper

Spectral speckle analysis: a new method to measure coherence and dephasing in semiconductor nanostructures
Author(s): G. Kocherscheidt; Wolfgang W. Langbein; Roland Zimmermann
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A new method to measure the coherence of inhomogeneously broadened optical excitations in semiconductor nanostructures is presented. The secondary emission of excitons in semiconductor quantum wells is investigated. The spectrally-resolved coherence degree of resonantly-excited light emission is deduced from the intensity fluctuations over the emission directions (speckles). The spectral correlations of the speckles give direct access to the homogeneous line width as function of spectral position within the inhomogeneously broadened ensemble. The combination of static disorder and phonon scattering leads to a partially coherent emission. The temperature dependence of the homogeneous line width is well explained by phonon scattering.

Paper Details

Date Published: 11 June 2003
PDF: 4 pages
Proc. SPIE 5023, 10th International Symposium on Nanostructures: Physics and Technology, (11 June 2003); doi: 10.1117/12.513755
Show Author Affiliations
G. Kocherscheidt, Univ. Dortmund (Germany)
Wolfgang W. Langbein, Univ. Dortmund (Germany)
Roland Zimmermann, Humboldt Univ. (Germany)

Published in SPIE Proceedings Vol. 5023:
10th International Symposium on Nanostructures: Physics and Technology
Zhores I. Alferov; Leo Esaki, Editor(s)

© SPIE. Terms of Use
Back to Top