Share Email Print

Proceedings Paper

Calibration issues with Shack-Hartmann sensors for metrology applications
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A long-standing goal of optical metrology is testing aspherics without the need for part specific nulls lenses. The problem involves increasing the measurement dynamic range while preserving accuracy. The Shack-Hartmann wavefront sensor offers an interesting alternative to interferometry where the dynamic range is tied to the wavelength of light. Because the Shack-Hartmann wavefront sensor is a geometric test, the lenslet array can be designed in a way that trades sensitivity for dynamic range making it possible to test, without a null, aspheres that would otherwise require null optics. However, a system with this much dynamic range will have special calibration issues. Shack-Hartmann wavefront sensors are widely used in feedback control systems for adaptive optics. In that application, calibration is not a serious problem as the system drives the correction to a null; calibration errors slow the rate of convergence. For metrology applications, the calibration of the Shack-Hartmann wavefront sensor must be absolute. This presentation will discuss issues related to the design and calibration of a Shack-Hartmann metrology system including the design of an appropriate lenslet array, methods for dealing with induced aberrations, vignetting and spatial resolution limitations.

Paper Details

Date Published: 26 February 2004
PDF: 9 pages
Proc. SPIE 5252, Optical Fabrication, Testing, and Metrology, (26 February 2004); doi: 10.1117/12.513462
Show Author Affiliations
John E. Greivenkamp, Optical Sciences Ctr./Univ. of Arizona (United States)
Daniel G. Smith, Optical Sciences Ctr./Univ. of Arizona (United States)
Eric Goodwin, Optical Sciences Ctr./Univ. of Arizona (United States)

Published in SPIE Proceedings Vol. 5252:
Optical Fabrication, Testing, and Metrology
Roland Geyl; David Rimmer; Lingli Wang, Editor(s)

© SPIE. Terms of Use
Back to Top