Share Email Print
cover

Proceedings Paper

High-density deformable mirrors to enable coronagraphic planet detection
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Active wavefront correction of a space telescope provides a technology path for extremely high contrast imaging astronomy at levels well beyond the capabilities of current telescope systems. A precision deformable mirror technology intended specifically for wavefront correction in a visible/near-infrared space telescope has been developed at Xinetics and extensively tested at JPL over the past several years. Active wavefront phase correction has been demonstrated to 1-Angstrom rms over the spatial frequency range accessible to a mirror with an array of actuators on a 1-mm pitch. High density deformable mirror technology is based on a modular actuator arrays that are scalable to 1000s of actuator elements coupled to the surface of a thin mirror facesheet. Precision actuator control is done by using a low-power, vacuum compatible multiplexed driver system. Mirror surface figure, actuator influence function, and dimensional stability will be given in the context of the Eclipse point design for a coronagraphic space telescope.

Paper Details

Date Published: 30 January 2004
PDF: 8 pages
Proc. SPIE 5166, UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts, (30 January 2004); doi: 10.1117/12.512729
Show Author Affiliations
Mark A. Ealey, Xinetics, Inc. (United States)
John T. Trauger, Jet Propulsion Lab. (United States)


Published in SPIE Proceedings Vol. 5166:
UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts
Howard A. MacEwen, Editor(s)

© SPIE. Terms of Use
Back to Top