Share Email Print
cover

Proceedings Paper

Remote sensing of chlorophyll concentration from space via principal component analysis of atmospheric effects
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A methodology is proposed to retrieve marine reflectance and chlorophyll-a concentration from space by decomposing the satellite reflectance into principal components. The components sensitive to the ocean signal are combined to retrieve the principal components of marine reflectance, allowing reconstruction of marine reflectance and estimation of chlorophyll-a concentration. Multi-layered perceptrons are used to approximate the functions relating the useful principal components of satellite reflectance to the principal components of marine reflectance. The algorithm is developed and evaluated using non-noisy and noisy synthetic data sets created for a wide range of angular and geophysical conditions. In the absence of noise on satellite reflectance, the relative error on marine reflectance does not exceed 2%. Accurate retrieval of the first principal component of marine reflectance allows a global relative error of 5.4% on chlorophyll-a concentration. In the presence of 1% non-correlated and 5% spectrally correlated noise on satellite reflectance, the relative error is increased to 6% and 21%, respectively. Application to SeaWiFS imagery yields marine reflectance and chlorophyll-a concentration fields that resemble those obtained from the standard SeaWiFS processing, but are generally less contrasted. Accuracy can be improved by including bio-optical variability in the simulated marine reflectance ensembles.

Paper Details

Date Published: 5 November 2003
PDF: 12 pages
Proc. SPIE 5155, Ocean Remote Sensing and Imaging II, (5 November 2003); doi: 10.1117/12.512191
Show Author Affiliations
Lydwine S. Gross-Colzy, Scripps Institution of Oceanography (United States)
Robert J. Frouin, Scripps Institution of Oceanography (United States)


Published in SPIE Proceedings Vol. 5155:
Ocean Remote Sensing and Imaging II
Robert J. Frouin; Gary D. Gilbert; Delu Pan, Editor(s)

© SPIE. Terms of Use
Back to Top