Share Email Print
cover

Proceedings Paper

Telescope resolution using negative refractive index materials
Author(s): Jack L. May; Tony Jennetti
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Concepts are presented for using negative refractive index (NRI) materials to design parabolic reflector telescopes and antennas with resolutions significantly better than the diffractions limit. The main question we are attempting to answer is can negative refractive material be used to improve performance of parabolic systems even when the signal or light source is far away and no evanescent fields are present when they arrive at the parabolic reflector. The main approach is to take advantage of any knowledge that we have to recreate the evanescent fields. Fields are then adapted to improve a performance measure such a sharper focus or antenna rejection of interference. A negative refraction index lens is placed between the conventional reflector and focal plane to shape the point spread function. To produce telescope resolutions that are better than the diffraction limit, evanescent fields created by the reflection off of the parabolic surface are amplified and modified to generate fields that sharpen the focus. A second approach use available knowledge of an emitting aperture to synthesize a field at a distance that matches as closely as possible the field of the emitting aperture. The yet unproven conclusion is that techniques can be developed that will improve antenna and telescopes resolution that is better than the diffraction limit.

Paper Details

Date Published: 30 January 2004
PDF: 8 pages
Proc. SPIE 5166, UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts, (30 January 2004); doi: 10.1117/12.509060
Show Author Affiliations
Jack L. May, Northrop Grumman Mission Systems (United States)
Tony Jennetti, Northrop Grumman Mission Systems (United States)


Published in SPIE Proceedings Vol. 5166:
UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts
Howard A. MacEwen, Editor(s)

© SPIE. Terms of Use
Back to Top