Share Email Print
cover

Proceedings Paper

Polymer microphotonics
Author(s): Louay A. Eldada
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We report on a polymer-based planar lightwave circuit platform that enables high levels of integration. The materials used represent the state of the art in optical polymers, and include properties such as ultra-low loss (0.1 dB/cm in single-mode waveguides at 1550 nm), widely tunable refractive index contrast (0-35%), and large thermo-optic coefficient (-3.2×10-4/°C). The large index contrast values enable compact photonic microcircuits. The circuits are produced photolithographically, and can have a variety of inorganic materials integrated in them (e.g., by insertion in slots or by flip-chip mounting), resulting in a platform that can support functions that span the range of the building blocks needed in optical circuitry, while using the highest-performance material for each function. In this manuscript, we focus on the polymeric microcircuits, which provide interconnects, static routing elements such as couplers, taps, and multi/demultiplexers, as well as thermo-optically dynamic elements such as tunable couplers, switches, variable optical attenuators, and tunable notch filters. We demonstrate complex-functionality polymeric photonic microcircuits based on this technology, including fully reconfigurable optical add/drop multiplexing subsystems on a chip that perform channel switching, power monitoring, load balancing, and wavelength shuffling.

Paper Details

Date Published: 20 October 2003
PDF: 12 pages
Proc. SPIE 5225, Nano- and Micro-Optics for Information Systems, (20 October 2003); doi: 10.1117/12.508458
Show Author Affiliations
Louay A. Eldada, DuPont Photonics Technologies (United States)


Published in SPIE Proceedings Vol. 5225:
Nano- and Micro-Optics for Information Systems
Louay A. Eldada, Editor(s)

© SPIE. Terms of Use
Back to Top