Share Email Print

Proceedings Paper

Analysis of fading for a free-space optical communication link subject to atmospheric scintillation
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Atmospheric scintillation causes fading to a free-space optical communications link. Optical communication links can be improved by the correct application of coding schemes customized to meet the atmospheric conditions. For this paper, we model atmospheric scintillation using a gamma-gamma probability distribution. From the scintillation model, the equations are derived for probability of fade along with mean fade time and the duration of fade. Parameters for the gamma-gamma model, directly related to atmospheric conditions, are used to compute theoretical cases of fading in weak and strong atmospheric turbulence. With the models for atmospheric fading, different coding techniques on a pulse-position modulation optical link are examined.

Paper Details

Date Published: 27 January 2004
PDF: 12 pages
Proc. SPIE 5160, Free-Space Laser Communication and Active Laser Illumination III, (27 January 2004); doi: 10.1117/12.507713
Show Author Affiliations
John J. Kiriazes, NASA Kennedy Space Ctr. (United States)
Ronald L. Phillips, Univ. of Central Florida (United States)
Larry C. Andrews, Univ. of Central Florida (United States)

Published in SPIE Proceedings Vol. 5160:
Free-Space Laser Communication and Active Laser Illumination III
David G. Voelz; Jennifer C. Ricklin, Editor(s)

© SPIE. Terms of Use
Back to Top