Share Email Print
cover

Proceedings Paper

Collinear asymmetrical polymer waveguide modulator
Author(s): Ray T. Chen; Lev S. Sadovnik
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A novel collinear polymer waveguide modulator was successfully demonstrated. A 36 dB modulation depth was observed with the combination of current induced absorption (3 dB) and phase-matched cross coupling (33 dB). The experimental data shows that the modulator is insensitive to beam polarization. Only 0.1 dB difference was observed between the transverse electric (TE) and transverse magnetic (TM) modes. The theoretical calculation projects a modulation bandwidth of multi gigabit/sec. The polymer microstructure film (PMSF) demonstrated an index tunability from a stepped-index profile to a graded-index (GRIN) profile. GRIN profiles have been produced using the swelling and dehydration process. High- quality waveguides have been generated on an array of optoelectronic substrates, including semiconductors, conductors, insulators, and ceramics. As a result, the demonstrated polymer waveguide modulator can be implemented on any system application where passive and active guided wave devices are employed. Besides the aforementioned universality, the ingenuity of the proposed device provides us with an extremely large dynamic range of the suitable waveguide effective index for waveguide-to-waveguide coupling, which is not achievable through any existing electro-optic devices. Drive power, fabrication cost, and interaction length are expected to be drastically reduced.

Paper Details

Date Published: 1 December 1991
PDF: 12 pages
Proc. SPIE 1559, Photopolymer Device Physics, Chemistry, and Applications II, (1 December 1991); doi: 10.1117/12.50694
Show Author Affiliations
Ray T. Chen, Physical Optics Corp. (United States)
Lev S. Sadovnik, Physical Optics Corp. (United States)


Published in SPIE Proceedings Vol. 1559:
Photopolymer Device Physics, Chemistry, and Applications II
Roger A. Lessard, Editor(s)

© SPIE. Terms of Use
Back to Top