Share Email Print
cover

Proceedings Paper

Polymer waveguide systems for nonlinear and electro-optic applications
Author(s): Philip Pantelis; Julian R. Hill; Raman Kashyap
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Waveguides with photochromic or electro-optic properties have been fabricated by a new technique using spin coating of polymers, or guest/host-polymer systems, on to grooves etched in an indium phosphide wafer. Monomoded waveguides at 633 nm, and at 1320 and 1550 nm (wavelengths of telecommunications interest) have been fabricated. These guides have good quality cleaved ends which allow efficient coupling of light from monomoded standard lensed silica fibers. An example of an electro-optic application is given in the form of a phase modulator. This device uses a side-chain polymer as the waveguide core that develops linear electro-optic properties following an electric field alignment process. It was found to have a switching voltage of 30 V, for a (pi) phase change, and had a total insertion loss of 9.4 dB. Waveguides with photochromic properties have also been produced using Aberchrome 670 (a commercially available fulgide) as a guest in a poly(methyl methacrylate) polymer host. Refractive index, optical loss, photochromic activity, and film forming properties of differing concentrations of guest (up to 20% concentration by weight) have been measured and are reported.

Paper Details

Date Published: 1 December 1991
PDF: 8 pages
Proc. SPIE 1559, Photopolymer Device Physics, Chemistry, and Applications II, (1 December 1991); doi: 10.1117/12.50651
Show Author Affiliations
Philip Pantelis, British Telecom Labs. (United Kingdom)
Julian R. Hill, British Telecom Labs. (United Kingdom)
Raman Kashyap, British Telecom Labs. (United Kingdom)


Published in SPIE Proceedings Vol. 1559:
Photopolymer Device Physics, Chemistry, and Applications II
Roger A. Lessard, Editor(s)

© SPIE. Terms of Use
Back to Top