Share Email Print
cover

Proceedings Paper

A radix-4 on-line division design and its application to networks of on-line modules
Author(s): Alexandre F. Tenca; Ajay Shantilal; Mohammed Sinky
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

On-line division is one of the slowest operations among the basic arithmetic operations and naturally becomes a bottleneck in networks of on-line modules that use it. A higher radix divider has a good potential to attain higher throughput than radix-2 dividers and therefore improve the overall throughput of networks where division is needed. The improvement in throughput when using radix 4 is not straightforward since several components of the divider become more complex than in the radix-2 case. Previously proposed radix-4 designs were based on operand pre-scaling to simplify the selection function and reduce the critical path delay, at the cost of more complexity in the algorithm conditions and operations, plus a variable on-line delay, which is a very unattractive feature when small precision values are used (usually the case for DSP). These designs include several phases for pre-scaling and actual division. This paper proposes a design approach based on overlapped replication that results in a radix-4 on-line division module with low algorithm complexity, single division phase, less restrictions to the input values, and a small and fixed on-line delay.

Paper Details

Date Published: 24 December 2003
PDF: 12 pages
Proc. SPIE 5205, Advanced Signal Processing Algorithms, Architectures, and Implementations XIII, (24 December 2003); doi: 10.1117/12.506455
Show Author Affiliations
Alexandre F. Tenca, Oregon State Univ. (United States)
Ajay Shantilal, Oregon State Univ. (United States)
Mohammed Sinky, Oregon State Univ. (United States)


Published in SPIE Proceedings Vol. 5205:
Advanced Signal Processing Algorithms, Architectures, and Implementations XIII
Franklin T. Luk, Editor(s)

© SPIE. Terms of Use
Back to Top