Share Email Print
cover

Proceedings Paper

MAXIM Pathfinder: a practical configuration
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The x-ray band of the spectrum is the natural place to perform super-high resolution imaging of astronomical objects. Because x-ray sources can have very intense surface brightness and interferometers can be made with very short baselines, x-ray interferometry has great potential. We will discuss MAXIM, the Micro-Arcsecond X-ray Imaging Mission and, in particular, MAXIM Pathfinder, a coordinated pair of x-ray astronomy missions designed to exploit the potential of x-ray interferometry. We will show how it is possible to achieve huge gains in resolution using today's technology. The Pathfinder mission will achieve resolution of 100 micro-arcseconds and will image the coronae of the nearby stars. MAXIM, with a design specification of 0.1 micro-arcseconds, has the goal of imaging the event horizons of massive black holes. We will explain the architecture of a possible Pathfinder mission and describe the activities NASA is supporting in the area of x-ray interferometry.

Paper Details

Date Published: 29 January 2004
PDF: 11 pages
Proc. SPIE 5168, Optics for EUV, X-Ray, and Gamma-Ray Astronomy, (29 January 2004); doi: 10.1117/12.506327
Show Author Affiliations
Webster C. Cash, Univ. of Colorado/Boulder (United States)
Keith C. Gendreau, NASA Goddard Space Flight Ctr. (United States)
Ann F. Shipley, Univ. of Colorado/Boulder (United States)
Dennis J. Gallagher, Ball Aerospace & Technologies Corp. (United States)


Published in SPIE Proceedings Vol. 5168:
Optics for EUV, X-Ray, and Gamma-Ray Astronomy
Oberto Citterio; Stephen L. O'Dell, Editor(s)

© SPIE. Terms of Use
Back to Top