Share Email Print
cover

Proceedings Paper

Off-axis spherical element telescope with binary optic corrector
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Teledyne Brown Engineering designed, fabricated and tested an infrared telescope using only spherical mirror elements. Aberrations were corrected with a binary optic pattern etched onto a germanium lens. The telescope is an F/3, off-axis Gregorian design with no obscuration. The field-of-view (FOV) is 4x8 degrees and it operates in the 8 to 12 micron waveband, with an entrance pupil of 5 cm. The telescope demonstrates that a single binary optical element can correct a significant amount of both pupil- and field-dependent aberrations introduced by tilted spherical mirrors, while maintaining a broad wavelength band of operation. The line spread functions, measured at 10 microns on the telescope, coincided very well with theoretical line spread functions generated by a commercial lens design code.

Paper Details

Date Published: 1 December 1991
PDF: 14 pages
Proc. SPIE 1555, Computer and Optically Generated Holographic Optics; 4th in a Series, (1 December 1991); doi: 10.1117/12.50627
Show Author Affiliations
Daniel M. Brown, Teledyne Brown Engineering (United States)
Alan D. Kathman, Teledyne Brown Engineering (United States)


Published in SPIE Proceedings Vol. 1555:
Computer and Optically Generated Holographic Optics; 4th in a Series
Ivan Cindrich; Sing H. Lee, Editor(s)

© SPIE. Terms of Use
Back to Top