Share Email Print
cover

Proceedings Paper

Optimizing wide-field coded aperture imaging: radial mask holes and scanning
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Imaging at hard X-ray energies (~10-600 keV) over very large fields of view (~60° per telescope) is required to conduct a high sensitivity all-sky and all-time survey for black holes. The proposed Energetic X-ray Imaging Survey Telescope (EXIST) could achieve the high sensitivity required for the mission science objectives by scanning an array of wide-field coded aperture telescopes with aperture mask holes radially aligned to minimize auto-collimation by the thick (~7mm) masks required for high energy imaging. Simulation results from a preliminary design study are reported which quantify the improvement in off-axis imaging sensitivity vs. the conventional case with mask holes all perpendicular to the mask. Such masks can be readily constructed from a stacked laminate of thin (1mm) laser-etched W sheets. An even more dramatic increase in coded aperture imaging sensitivity, and dynamic range, for a realistic telescope and imaging detector with typical systematic errors can be achieved by continuously scanning the field of view of the telescope over the source region to be imaged. Simulation results are reported for detectors with systematic errors 1-10%, randomly distributed but unknown in each detector pixel. For the simplified case of a 1-D coded aperture telescope scanning along its pattern, the systematics are removed identically. Results are also presented for the 2-D case with both 1-D and partial 2-D scanning which demonstrate the feasibility of a coded aperture scanning telescope with systematic errors achieving nearly Poisson-limited sensitivity for signal/background ratios S/B ~ 10-4, in constrast to limits typically ~10-100X worse that have been actually achieved by pointed or dithered coded aperture telescopes flown (or proposed) previously.

Paper Details

Date Published: 29 January 2004
PDF: 9 pages
Proc. SPIE 5168, Optics for EUV, X-Ray, and Gamma-Ray Astronomy, (29 January 2004); doi: 10.1117/12.506260
Show Author Affiliations
Jonathan E. Grindlay, Harvard-Smithsonian Ctr. for Astrophysics (United States)
JaeSub Hong, Harvard-Smithsonian Ctr. for Astrophysics (United States)


Published in SPIE Proceedings Vol. 5168:
Optics for EUV, X-Ray, and Gamma-Ray Astronomy
Oberto Citterio; Stephen L. O'Dell, Editor(s)

© SPIE. Terms of Use
Back to Top