Share Email Print

Proceedings Paper

An automated subaperture stitching interferometer workstation for spherical and aspherical surfaces
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Subaperture stitching is a well-known technique for extending the effective aperture and dynamic range of phase measuring interferometers. Several commercially available instruments can automatically stitch flat surfaces, but practical solutions for stitching spherical and aspherical surfaces are inherently more complex. We have developed an interferometer workstation that can perform high-accuracy automated subaperture stitching of spheres, flats, and mild aspheres up to 200 mm in diameter. The workstation combines a six-axis precision stage system, a commercial Fizeau interferometer of 4” or 6” aperture, and a specially developed software package that automates measurement design, subaperture data acquisition, and the mathematical reconstruction of a full-aperture phase map. The stitching algorithm incorporates a general constrained optimization framework for compensating for several types of errors introduced by the interferometer optics and stage mechanics. These include positioning errors, viewing system distortion, and the system reference wave. We present repeatability data, and compare stitched full-aperture measurements made with two different transmission spheres to a calibrated full-aperture measurement. We also demonstrate stitching’s ability to test larger aspheric departures on a 10 mm departure parabola, and compare the preliminary results with a full-aperture null test.

Paper Details

Date Published: 4 November 2003
PDF: 12 pages
Proc. SPIE 5188, Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies, (4 November 2003); doi: 10.1117/12.506254
Show Author Affiliations
Jon Fleig, QED Technologies, Inc. (United States)
Paul Dumas, QED Technologies, Inc. (United States)
Paul E. Murphy, QED Technologies, Inc. (United States)
Greg W. Forbes, QED Technologies, Inc. (United States)

Published in SPIE Proceedings Vol. 5188:
Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies
Angela Duparre; Bhanwar Singh, Editor(s)

© SPIE. Terms of Use
Back to Top