Share Email Print

Proceedings Paper

Applications of synchroscan and dual-sweep streak camera techniques to free-electron laser experiments
Author(s): Alex H. Lumpkin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The results of several types of time-resolved experiments on rf-linac driven free-electron lasers (FELs) using streak-camera techniques are presented. In the past these techniques generally traded off time resolution, time span, and timing jitter to address either submicropulse or submacropulse effects. More recently, we have taken advantage of synchroscan streak cameras that were phase-locked to the reference 108.3 MHz rf signal combined with an orthogonal slow ramp deflection. One can then obtain submicropulse, submacropulse, and phase information during a single 100-microsecond(s) long macropulse. Samples of results include electron beam bunch lengths, cavity length tuning, phase slew/jitter, drive- laser phase stability, and visible FEL output temporal effects. Several of these demonstrations are the first of their kind on a FEL system (to our knowledge).

Paper Details

Date Published: 1 December 1991
PDF: 8 pages
Proc. SPIE 1552, Short-Wavelength Radiation Sources, (1 December 1991); doi: 10.1117/12.50591
Show Author Affiliations
Alex H. Lumpkin, Los Alamos National Lab. (United States)

Published in SPIE Proceedings Vol. 1552:
Short-Wavelength Radiation Sources
Phillip Sprangle, Editor(s)

© SPIE. Terms of Use
Back to Top