Share Email Print

Proceedings Paper

Theoretical investigation of near-edge phenomena in magnetic systems
Author(s): Paolo Carra
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Theoretical results on x-ray resonant magnetic scattering at the M4,5-edges of Uranium compounds and circular magnetic x-ray dichroism at the L3-edge of heavy rare earth systems are reported, with the aim of providing an interpretation of recent experiments. Near an inner-shell absorption threshold, the effect of spin-orbit and exchange interactions is reflected in the presence of magnetization-sensitive components in the anomalous scattering amplitude; as a consequence, x-ray magnetic scattering can exhibit a dramatic enhancement. This has been demonstrated experimentally and theoretically. In the x-ray region, strong magnetic effects can be observed in absorption (linear and circular dichroism), the Kerr effect, and Faraday rotation. Dispersive and absorptive processes are determined by the forward scattering amplitude; hence, the above-mentioned magneto-optical phenomena can be brought together into a general formulation. Recently, magnetization-sensitive effects, associated with x-ray photoemission, have also been observed and discussed. In this paper we report ab initio atomic calculation of resonant magnetic scattering (XRES) at the M4,5-edges of the Uranium compounds. Also, we present calculations of circular magnetic x-ray dichroism at the L3-edge of the GdyieldsTm series.

Paper Details

Date Published: 1 November 1991
PDF: 10 pages
Proc. SPIE 1548, Production and Analysis of Polarized X Rays, (1 November 1991); doi: 10.1117/12.50571
Show Author Affiliations
Paolo Carra, European Synchrotron Radiation Facility (France)

Published in SPIE Proceedings Vol. 1548:
Production and Analysis of Polarized X Rays
D. Peter Siddons, Editor(s)

© SPIE. Terms of Use
Back to Top