Share Email Print

Proceedings Paper

Material characterization of beryllium mirrors exhibiting anomalous scatter
Author(s): Charles M. Egert
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

To understand the origin of anomalous scatter it is necessary to consider materials-related features which might be responsible for this anomalous behavior. In this study, a variety of material characteristics of a subset of the beryllium mirrors used in an investigation of anomalous scatter by Stover et. al. (1989) is presented, including the near-surface chemical composition, grain size, surface particulate density, and ultraviolet-visible reflectance values. These material characteristics are compared with the anomalous scatter level reported by Stover for the same mirrors. One mirror (B-85), which exhibits a high level of anomalous scatter, was found to have larger grain size (about 28 microns) and a high density of localized surface porosity, compared to other mirror samples with lower levels of anomalous scatter.

Paper Details

Date Published: 1 December 1991
PDF: 9 pages
Proc. SPIE 1530, Optical Scatter: Applications, Measurement, and Theory, (1 December 1991); doi: 10.1117/12.50506
Show Author Affiliations
Charles M. Egert, Oak Ridge National Lab. (United States)

Published in SPIE Proceedings Vol. 1530:
Optical Scatter: Applications, Measurement, and Theory
John C. Stover, Editor(s)

© SPIE. Terms of Use
Back to Top