Share Email Print

Proceedings Paper

Quantum Gaussian noise
Author(s): Jeffrey H. Shapiro
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In semiclassical theory, light is a classical electromagnetic wave and the fundamental source of photodetection noise is the shot effect arising from the discreteness of the electron charge. In quantum theory, light is a quantum-mechanical entity and the fundamental source of photodetection noise comes from measuring the photon-flux operator. The Glauber coherent states are Gaussian quantum states which represent classical electromagnetic radiation. Quantum photodetection of these states yields statistics that are indistinguishable from the corresponding Poisson point-process results of semiclassical photodetection. Optical parametric interactions, however, can be used to produce other Gaussian quantum states, states whose photodetection behavior cannot be characterized semiclassically. A unified analytical framework is presented for Gaussian-state photodetection that includes the full panoply of nonclassical effects that have been produced via parametric interactions.

Paper Details

Date Published: 16 May 2003
PDF: 14 pages
Proc. SPIE 5111, Fluctuations and Noise in Photonics and Quantum Optics, (16 May 2003); doi: 10.1117/12.504770
Show Author Affiliations
Jeffrey H. Shapiro, Massachusetts Institute of Technology (United States)

Published in SPIE Proceedings Vol. 5111:
Fluctuations and Noise in Photonics and Quantum Optics
Derek Abbott; Jeffrey H. Shapiro; Yoshihisa Yamamoto, Editor(s)

© SPIE. Terms of Use
Back to Top