Share Email Print
cover

Proceedings Paper

Impact of random jitter on a laser satellite communication system with an optical preamplifier
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this work we derive a model, which optimizes the performance of a laser satellite communication link with an optical preamplifier in the presence of random jitter in the transmitter-receiver line of sight. The system utilizes a transceiver containing a single telescope with a circulator. The telescope is used for both transmitting and receiving and thus reduces communication terminal dimensions and weight. The optimization model for optimal transmitted power and transceiver gain was derived under the assumption that the dominant noise source was amplifier spontaneous emission (ASE) noise. We investigate the effect of the amplifier spontaneous emission noise on the optimal transmitted power and gain by performing an optimization procedure for various combinations of amplifier gains and noise figures. It was shown that the amplifier noise figure determines the transmitted power needed to achieve the desired BER, but does not affect the transceiver telescope gain. We found in our numerical example that for a BER of 10-9, doubling the amplifier noise figure results in an 80% increase of minimal transmitted power for rms pointing jitter of 0.44 μrad.

Paper Details

Date Published: 27 January 2004
PDF: 10 pages
Proc. SPIE 5160, Free-Space Laser Communication and Active Laser Illumination III, (27 January 2004); doi: 10.1117/12.504561
Show Author Affiliations
Anna Polishuk, Ben-Gurion Univ. of the Negev (Israel)
Shlomi Arnon, Ben-Gurion Univ. of the Negev (Israel)


Published in SPIE Proceedings Vol. 5160:
Free-Space Laser Communication and Active Laser Illumination III
David G. Voelz; Jennifer C. Ricklin, Editor(s)

© SPIE. Terms of Use
Back to Top