Share Email Print

Proceedings Paper

Novel optical wavelength interleaver based on symmetrically parallel-coupled and apodized ring resonator arrays
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical ring-resonators could be used to synthesize filters with low crosstalk and flat passbands. Their application to DWDM interleaving has been proposed and investigated previously. However, a number of important factors related to this topic have not yet been considered and appropriately addressed. In this paper, we propose a novel scheme of a symmetrically parallel-coupled ring resonator array with coupling apodisation. We show that it can be used to construct a wavelength interleaver with remarkably improved performance. Various design factors have been considered. An optimization procedure was developed based on minimizing the channel crosstalk in the through and drop ports simultaneously by adjusting the ring-bus coupling coefficients. We show that apodisation in coupling could suppress channel crosstalk effectively, by choosing the optimal coupling coefficients. We also introduced the equalization of both the input and output coupling coefficients to minimise passband ripple. For a 50 - 100 GHz DWDM applications, four rings is found to be the best choice for array size. A four-ring filter achieves crosstalk -24 dB, insertion loss at resonance <1 dB, and good passband flatness (shape factor >0.6).

Paper Details

Date Published: 21 October 2003
PDF: 9 pages
Proc. SPIE 5206, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications IX, (21 October 2003); doi: 10.1117/12.504535
Show Author Affiliations
Christopher John Kaalund, Univ. of New South Wales (Australia)
Zhe Jin, Univ. of New South Wales (Australia)
Wei Li, Univ. of New South Wales (Australia)
Gang-Ding Peng, Univ. of New South Wales (Australia)

Published in SPIE Proceedings Vol. 5206:
Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications IX
Francis T. S. Yu; Ruyan Guo; Shizhuo Yin, Editor(s)

© SPIE. Terms of Use
Back to Top