Share Email Print
cover

Proceedings Paper

Novel fiber Bragg grating fabrication method by high-precision shutter control
Author(s): Yisi Liu; Claire Gu; J. J. Pan; Liang Dong; Feng Qing Zhou
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Fiber Bragg grating (FBG) is an important element in many applications including filters and dispersion compensators in fiber communication systems. With recently developed inverse scattering algorithm, FBGs with desired reflection spectrum and/or dispersion properties can now be designed. However, most of these designs require arbitrary grating amplitude and phase control. Previously, fabrication of such FBGs relies on the accurate control of the temporal variation of the intensity pattern using a piezo electric translation stage. The precision of this fabrication method is limited by the noise in the control voltage, which is usually larger than 1%. The distortion in piezo response also affects the performance. In this paper, we develop and demonstrate a novel writing technique for arbitrary FBG fabrication. Our technique is based on a translate-and-write configuration. The incorporation of a precisely controlled shutter allows the apodization and phase of the FBG to be continuously changed at each grating line. The shutter error mainly results from the control signal's timing jitter, which is normally lower than 0.1%. Using this writing technique, we demonstrate a Hamming apodized grating with 20mm length, -22 dB minimum transmission, and < -25 dB reflection side lobe suppression. Furthermore, phase-shift in a grating can be fabricated by a simple delay in the control signal. We also demonstrate FBGs with π, π/2, 3π/2 phase-shifts, respectively. Our experimental results are in excellent agreement with theoretical predictions. To show the capability to fabricate a FBG with arbitrary structure, we demonstrate a 35 mm long zero dispersion grating.

Paper Details

Date Published: 21 October 2003
PDF: 11 pages
Proc. SPIE 5206, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications IX, (21 October 2003); doi: 10.1117/12.502754
Show Author Affiliations
Yisi Liu, Univ. of California, Santa Cruz (United States)
Claire Gu, Univ. of California, Santa Cruz (United States)
J. J. Pan, Lightwaves 2020, Inc. (United States)
Liang Dong, Lightwaves 2020, Inc. (United States)
Feng Qing Zhou, Lightwaves 2020, Inc. (United States)


Published in SPIE Proceedings Vol. 5206:
Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications IX
Francis T. S. Yu; Ruyan Guo; Shizhuo Yin, Editor(s)

© SPIE. Terms of Use
Back to Top