Share Email Print

Proceedings Paper

Moore's law is killed by classical physics: can quantum information save it?
Author(s): Laszlo B. Kish
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In a recent study (Physics Letters A 305 (2002) 144-149) the forthcoming end of Moore's Law was predicted. The study was based on the assumption that the power dissipation was dominated by the energy dissipated during charging/discharging the CMOS gate capacitance during bit flips. In the present paper the fundamental lower limit of power dissipation during the operation of a CMOS gate is obtained. The results indicate that the energy efficiency of today’s microprocessors is extremely low. Thus, a significant improvement of the energy efficiency of microprocessors may be able to prolong the lifetime of Moore's Law. We compare the results with published data on the lower limit of power dissipation of quantum gates. Interestingly, "Classical" beats "Quantum," if we give the same chance to them. Finally, we evaluate the energy cost of Shannon-information transfer. This measure, which cannot be improved by error correcting algorithms, is the ultimate one, the real characteristic of performance versus power dissipation. In the most ideal case, the CMOS gate performs by at least an order of magnitude better than the quantum gate. It is shown that, at the same complexity of hardware, same speed and same temperature, quantum computing means more noise, less information channel capacity and greater power dissipation than the same measures in classical computers.

Paper Details

Date Published: 8 May 2003
PDF: 7 pages
Proc. SPIE 5115, Noise and Information in Nanoelectronics, Sensors, and Standards, (8 May 2003); doi: 10.1117/12.502062
Show Author Affiliations
Laszlo B. Kish, Dept. of Electrical Engineering, Texas A&M Univ. (United States)

Published in SPIE Proceedings Vol. 5115:
Noise and Information in Nanoelectronics, Sensors, and Standards
Laszlo B. Kish; Frederick Green; Giuseppe Iannaccone; John R. Vig, Editor(s)

© SPIE. Terms of Use
Back to Top