Share Email Print
cover

Proceedings Paper

Statistical characterization of speckle noise in coherent imaging systems
Author(s): Leonid Yaroslavsky; A. Shefler
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Speckle noise imposes fundamental limitation on image quality in coherent radiation based imaging and optical metrology systems. Speckle noise phenomena are associated with properties of objects to diffusely scatter irradiation and with the fact that in recording the wave field, a number of signal distortions inevitably occur due to technical limitations inherent to hologram sensors. The statistical theory of speckle noise was developed with regard to only limited resolving power of coherent imaging devices. It is valid only asymptotically as much as the central limit theorem of the probability theory can be applied. In applications this assumption is not always applicable. Moreover, in treating speckle noise problem one should also consider other sources of the hologram deterioration. In the paper, statistical properties of speckle due to the limitation of hologram size, dynamic range and hologram signal quantization are studied by Monte-Carlo simulation for holograms recorded in near and far diffraction zones. The simulation experiments have shown that, for limited resolving power of the imaging system, widely accepted opinion that speckle contrast is equal to one holds only for rather severe level of the hologram size limitation. For moderate limitations, speckle contrast changes gradually from zero for no limitation to one for limitation to less than about 20% of hologram size. The results obtained for the limitation of the hologram sensor’s dynamic range and hologram signal quantization reveal that speckle noise due to these hologram signal distortions is not multiplicative and is directly associated with the severity of the limitation and quantization. On the base of the simulation results, analytical models are suggested.

Paper Details

Date Published: 30 May 2003
PDF: 8 pages
Proc. SPIE 5144, Optical Measurement Systems for Industrial Inspection III, (30 May 2003); doi: 10.1117/12.502054
Show Author Affiliations
Leonid Yaroslavsky, Tel Aviv Univ. (Israel)
A. Shefler, Tel Aviv Univ. (Israel)


Published in SPIE Proceedings Vol. 5144:
Optical Measurement Systems for Industrial Inspection III
Wolfgang Osten; Malgorzata Kujawinska; Katherine Creath, Editor(s)

© SPIE. Terms of Use
Back to Top