Share Email Print

Proceedings Paper

Frit bonding: a way to larger and more complex silicon components
Author(s): Frank M. Anthony; Douglas R. McCarter; Matthew Tangedahl; Mallory Wright
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The value of glass frit bonding to assemble silicon parts wa demonstrated by the successful evaluation of cryostability of a small multi-piece silicon mirror. This bonding technique has been extended to the assembly of a 44kg block of silicon, 113 x 400 x 400 mm. Such an assembly was considered to be a cost competitive alternative to the purchase of a custom sized silicon boule. Various types of evaluation provided the foundation upon which this accomplishment is based. Included were cryocycling of frit bonded plates, comparison of the strength of bonded silicon bend bars with that of silicon bend bars, and the fabrication and cryotest of a small concave frit bonded silicon mirror. Of the 16 bonded bars in two groups only 2 had failures in the bondline, 11 failed in the silicon, and origins could not be determined for 3 bars. The two groups of bonded silicon bars had average strengths that were 84% and 91% of the average strength of the plain silicon bars. In view of the relatively small number of bars in each group this is not surprising. The cryostability of the concave bonded silicon mirror was demonstrated by a figure error of less than 0.06 wave rms at 633 nm, cold to warm, compared to a specification of 0.1 wave rms, and 0.014 wave rms, warm to cold to warm, over an 80% clear aperture. These results are reviewed before interesting features of the large block are discussed. Finally, projections are made regarding possible future applications for this bonding process.

Paper Details

Date Published: 12 December 2003
PDF: 9 pages
Proc. SPIE 5179, Optical Materials and Structures Technologies, (12 December 2003); doi: 10.1117/12.501546
Show Author Affiliations
Frank M. Anthony, McCarter Technology, Inc. (United States)
Douglas R. McCarter, McCarter Technology, Inc. (United States)
Matthew Tangedahl, McCarter Technology, Inc. (United States)
Mallory Wright, McCarter Technology, Inc. (United States)

Published in SPIE Proceedings Vol. 5179:
Optical Materials and Structures Technologies
William A. Goodman, Editor(s)

© SPIE. Terms of Use
Back to Top