Share Email Print
cover

Proceedings Paper

Low-temperature InOx thin films for O3 and NO2 gas sensing
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The desirable electrical properties of InOx thin films and their response towards oxidizing gases has promoted InOx to be recognized as a promising material for gas sensors. In this study, InOx films in the thickness range of 10-1000 nm were deposited onto Corning 7059 glass substrates by dc magnetron sputtering. Their structural, electrical, and O3 and NO2 sensing properties were analyzed. Structural investigations carried out by XRD and AFM showed a strong correlation between crystallinity, surface topology and gas sensitivity. Moreover, the electrical conductivity exhibited a change of over six orders of magnitude during the processes of photoreduction and oxidation. The films deposited on alumina transducers were calibrated towards O3 and NO2 at temperatures from 50-300 °C. The sensors show promising characteristics as they exhibited reproducible and stable responses. The 50 nm thin film had a response of over 10 towards 50 ppb of ozone operating at 50°C, while the 20 nm film had a response of over 22 towards 0.1 ppm of NO2 at 100°C.

Paper Details

Date Published: 24 April 2003
PDF: 8 pages
Proc. SPIE 5116, Smart Sensors, Actuators, and MEMS, (24 April 2003); doi: 10.1117/12.501464
Show Author Affiliations
George Kiriakidis, Foundation for Research and Technology-Hellas (Greece)
Hassan Ouacha, Foundation for Research and Technology-Hellas (Greece)
N. Katsarakis, Foundation for Research and Technology-Hellas (Greece)
Kosmas Galatsis, RMIT Univ. (Australia)
Wojtek Wlodarski, RMIT Univ. (Australia)


Published in SPIE Proceedings Vol. 5116:
Smart Sensors, Actuators, and MEMS
Jung-Chih Chiao; Vijay K. Varadan; Carles Cané, Editor(s)

© SPIE. Terms of Use
Back to Top